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4 ABSTRACT 

/ 7 Z % 4 /  !- 
A general formulation of a geometrically nonlinear 

theory of shells i s  developed, utilizing bas i c  concepts 
from vector and tensor analyses. 

Large deflections and rotations are considered, 
consistent with the assumption of linear stress-strain re- 
lations. In addition, the fundamental Kirchhoff hypothesis 
i s  introduced to reduce tine sheii probiem to one of two 
dimensions. 

After t h e  general theory governing the  equilibrium 
configurations of a shell structure i s  established, the  
condition of stable or unstable equilibrium is considered. 

&,Q--- 

I. INTRODUCTION 

The purpose o f  t h i s  Report  is to  deve lop  a general  formulation of a geometrically nonl inear  theory of 

shells. Appropriate generali ty wi l l  be achieved  through the  u s e  of b a s i c  concep t s  from vec tor  and  t enso r  

an  a1 y s i  s . 

P h y s i c a l  or mater ia l  nonlinearity will  no t  be considered. Deformations a re  a s sumed  to be suf f ic ien t ly  

smal l  to i n su re  the validity of l i nea r  s t r e s s - s t r a in  relations,  but t h i s  assumpt ion  s t i l l  admi ts  the  poss ib i l i t y  

tha t  a sufficiently-thin shell can s u s t a i n  relatively-large def lec t ions  and  ro ta t ions ,  such  as occur  in  a snap-  

through problem. Even  de f l ec t ions  tha t  a re  the same order of magnitude as the  shell t h i ckness  g ive  r i s e  to  

geometrical  nonl inear i t ies  in  the  theory. 

A shell may be cons idered  as a three-dimensional e l a s t i c  body, but the  fundamental Kirchhoff 

hypo thes i s ,  which d e a l s  with the  geometry of shell deformation, i s  introduced to  reduce  the  problem to one  

of two dimensions.  Although addi t iona l  approximations a re  not  n e c e s s a r y  in  the  development of the theory, 

some  s p e c i a l  approximations,  s u c h  as that u s e d  for sha l low s h e l l s ,  wi l l  a l s o  be considered. In view o f  the  

modern, high-performance, computational equipment tha t  i s  now readily ava i l ab le ,  t h e s e  s p e c i a l  approxima- 

t i ons  may n o t  now be as important as they  once  were. 

Af te r  the general  theory governing the equilibrium configurations of  a s h e l l  s t ruc ture  has been 

e s t ab l i shed ,  the condi t ions  under which a n  equilibrium configuration i s  s t a b l e  or uns tab le  wi l l  be cons idered .  

The c l a s s i c a l  l inear  theory of e l a s t i c  s tabi l i ty  will be cons idered  a s  a s p e c i a l  ca se .  

1 
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11. TENSOR ANALYSIS AND THEORY O F  SURFACES 

1 

In order to formulate a geometrically nonlinear theory of shells with the  des i red  degree  of generali ty,  

b a s i c  concepts  from vector and tensor  a n a l y s i s  and the  theory of su r faces  will  be  applied.  The following i s  

an  out l ine  of r e su l t s  that a r e  most directly appl icable  in the theory of shells.  More de ta i led  treatment of the  

sub jec t  may be found i n  t r e a t i s e s  by Sokolnikoff, Synge and Schild,  or Green and  Zerna. (For p rec i se  

re ferences ,  s e e  en t r ies  in the  BIBLIOGRAPHY a t  the  end of t h i s  Report.) 

Modern vector-and-tensor a n a l y s i s  makes  u s e  of an  indicia1 notation and  summation convention. In 

t h i s  Report, the Einstein summation convention will  be  u s e d  throughout. 

A. Coordinate Transformation, Definit ion of a Tensor 

The concept  of a tensor i s  intimately a s s o c i a t e d  with the  behavior of mathematical  ob jec t s  under a 

coordinate transformation or a change of independent variables.  For our purposes ,  we shall  be concerned 

with quant i t ies  in a three-dimensional Eucl idean  s p a c e  and a two-dimensional Riemannian s p a c e ,  for which 

there a re  three or two independent var iab les ,  respec t ive ly .  

Cons ider  a se t  of three independent  var iab les  x', where the index i = 1, 2, 3. Now introduce another  

s e t  of var iab les  yi  that i s  re la ted  to the f i rs t  s e t  by the coordinate transformation 

T h i s  coordinate transformation i s  assumed to be s ingle-va lued  and revers ib le ,  in which c a s e  the  

transformation can  be written in the form 

By the  chain rule of partial  differentiation, with the unders tanding  that  repea ted  ind ices  a re  s u m m e d ,  

d i f fe ren t ia l s  can be expressed  as  

2 
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Evidently 

1 0  for i f j 

The S! i s  known as the  Kronecker del ta .  
I 

We are  now in a posit ion to introduce some def in i t ions  that  a r e  fundamental in tensor  ana lys i s ,  

as  follows: 

1. A scalar invariant i s  a function F for which 

for va lues  of x and y that  a r e  re la ted  by the coordinate transformation in Eq. (2). 

2 .  A covariant vector, or covariant tensor of order one ,  is a s e t  of three quant i t ies  A .  (x) in the  x 

coordinate sys tem which i s  re la ted  to  the  quantit ies ,Ai (y) in  the  y coordinate sys tem by the  equation 

By virtue of  Eq. (4), t h i s  relation a l so  t a k e s  the  form 

A i  = C i  A .  
-1 
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3.  .A contravariant vector i s  a s e t  of quant i t ies  A i  (x) tha t  a r e  re la ted  to A' (y) by the equation 
.-L. 

From th i s  definit ion,  Eq. (3) i nd ica t e s  tha t  dxi i s  a contravariant vector.  

4. A covariant tensor of order two i s  a s e t  of n ine  quan t i t i e s  B . .  (x) tha t  a r e  re la ted  to B . .  (y) by 
L I  ,-b L I  

the equation 

B . .  = C T  C? Bmn 
- 2 1  'v ' v l  

5 .  A contravariant tensor of order two i s  a s e t  of quan t i t i e s  in the  x and y coordinate s y s t e m s  that  

a r e  re la ted  by the  equation 

6 .  A mixed tensor of order two i s  a s e t  of quant i t ies  in the  x and y coordinate sys t ems  tha t  a r e  

re la ted  by the- equation 

Higher-order tensors  a re  def ined  in  a manner s imi la r  to t h e  above. 

4 
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B. Curvilinear Coordinates and Base Vectors 

L e t  zi be  rectangular Cartesian coordinates with the  origin 0 fixed in s p a c e  as  indica ted  in Fig.  1. 
- 

T h e  ii a re  uni t  base vec tors ,  and  the  posit ion of a point P with coord ina tes  zL can be def ined  by the  pos i t ion  

vec tor  R ,  where 
- 

. -  
R = z 2  i; (12) 

F ig .  1. Rectangular Cartesian coord ina tes  

5 
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The differential of the  posit ion vector i s  ea s i ly  found to be 

and  the length of a line element i s  given by 

. - -  
d s 2  = d R .  d R  = i i .  i. d z '  d z l  = 6 . .  d z i  d z i  

I ' I  
(14) 

L e t  u s  now introduce a curvil inear coordinate sys t em,  x, defined by the coordinate transformation 

x' = x' ( z ) ,  or 2' = z L  (x) (15) 

- 
If R is now regarded as a function of xi and i f  we u s e  the  notation that  a comma followed by a 

subscr ip t  i deno tes  partial differentiation with r e spec t  to x', then 

where 

and 

- 
g .  = R .  ,' 

Since zi i s  analogous to y i  in Eq. (3), we write 

(18) 

6 
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Substi tution of t h i s  express ion  into Eq. (16) y i e lds  

- - 
d R  = gi ,$ d z i  

which, by comparison with Eq. (13), l e a d s  to the  result  

( 20) 

- - - 
i. = gi, or g; = ci;. (21) 
! 2. C I  

- 

From the  definit ion (Eq. 6),  Eq. (21) is s e e n  t o  be a covariant l a w  of transformation. The gi are  therefore 

ca l l ed  covariant base vectors for the  x coordinate sys t em;  their  phys i ca l  meaning i s  ind ica ted  in F ig .  2. 

Obse rve  that ,  in genera l ,  t he  gi are  not orthogonal unit vec tors ,  and  t h e  point P has  no par t icu lar  re la t ion  to 

the  origin of t he  coord ina tes  XI. Although the base vec tors  i. a re  cons tan t ,  t he  gi a re  func t ions  of x'. 

- 

- - 

I 

Fig .  2.  Covariant base vec to r s  
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By us ing  Eq. (16), the length of a l ine element i s  found to  be 

where 

i s  ca l led  the covariant metric tensor of the  x coordinate sys tem.  T h e  term “ tensor”  i s  jus t i f ied  s i n c e ,  by 

virtue of Eq. (221, (19), and (14), 

which, according to the definition (Eq. 9), i s  a covariant tensor  transformation. Observe  tha t  g . .  i s  a 

symmetric tensor.  I t  should be c l ea r  tha t  6.. i s  the  metric tensor  for the  rectangular Cartesian coordinate 

sys t em zi. 

‘ I  

‘ I  

C. Reciprocal Base Vectors 

- 

There  is no distinction between covariant and  contravariant components of t he  base vec tors  ii in  a 
-. - 

rec tangular  Cartesian coordinate sys tem.  T h u s  we can write i’ = ii  and define contravariant base vec tors  in 

the  x coordinate system by the  contravariant l aw  of transformation 

In view of Eq. (24), i t  is eas i ly  shown tha t  

-. - 
g’ g. = 6’. 

I I 

which ind ica t e s  that ,  in  general ,  t he  covariant and contravariant b a s e  vec to r s  in t h e  X coordinate sys t em 

a r e  orthogonal and  reciprocal to  each  other. Analogous to Eq. (23), t he  contravariant metric t enso r  i s  

( 26) 
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defined by 

T h e  following usefu l  formulas are derived from Eq. (25), (21), and (4): 

g ik g i k  = 8; 

T h u s ,  the metric tensor  can be u s e d  t o  r a i s e  or lower ind ices .  

D. Tensor Components and Physical Components of a Vector 

- 

Any vector V ,  such  as a force vector in a three-dimensional Eucl idean  s p a c e ,  can be expres sed  in  

terms of components t ha t  a r e  a s s o c i a t e d  with a coordinate sys tem.  T h u s  

In view of the formulas (Eq. 28) 

. .  
VL = g' l  vi, and (30) 

In order to show that  Vi i s  a component of a covar ian t  tensor,  no te  tha t  

-. _. 
V = Vi g L  = ,Vi i L  (31) 

From Eq. (25), it follows that 

which i s  a covariant law of transformation. 

9 
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- -. - -. 
Since  i L  a re  unit vec tors ,  V i  a re  phys ica l  componcnts of  V .  The  g L  are  not un i t  vectors,  but V can 

-, -. 
s t i l l  be expres sed  in terms of phys ica l  components V ( ' )  a s s o c i a t e d  with g L  di rec t ions  a s  follows: 

- 
Since  I I = /- = f l e t c . ,  the phys ica l  and tensor  components of V are  re la ted  by 

Similarly,  t he  phys ica l  components in the  i. di rec t ions  a re  found to b e  

E. Derivative of a Vector--Covariant Derivatives 

- - - 
The covariant base  vectors gi are  expres sed  in  terms o f  the posit ion vector R by Eq. (18). Since R 

is a continuous function of x', i t  follows that 

From Eq. (21) and the  definition of C'. , we have  
I 

We can a l s o  write 
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By combining Eq. (38) and (37), and introducing the def in i t ions  of the  Chr is tof fe l  symbols  of the f i rs t  and 

second  k inds ,  respec t ive ly ,  

the  der iva t ive  of t he  base vec tors  becomes  

(41) 

By u s i n g  the resu l t  (Eq. 40), the  der iva t ive  (Eq. 41) becomes  

where 

- 

Now for  any vector V, which i s  expressed  in terms of i t s  components by Eq. (29), t he  der iva t ive  c a n  

be writ ten a s  

i s  the  covariant derivative of the tensor  V m .  

A s imi la r  l ine of reasoning  l e a d s  to the result  

11 
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w h e r e  

I t  can be shown tha t  V i  and  Vi,j are  second  order tensors .  / i  

I t  should be noted that from Eq.  (24) and the  definition (Eq. 39), there  fol lows a formula that is 

usua l ly  more convenient for determining the Christoffel symbols:  

r . .  = 
' I  r 

(46) 

F .  Formulas from the Theory of Surfaces 

Consider  a two-dimensional sur face  that i s  imbedded i n  our three-dimensional Eucl idean  space .  AS 
- 

ind ica ted  in Fig.  3, the position vec tor  r of poin ts  on t h i s  sur face  from the f ixed point  0 is a function of two 

var iab les  

The two vectors tha t  a re  tangent  to the surface in the direct ion of the coordinate  l i n e s  a r e  given by 

Here and  in what  follows, we  u s e  the convent ion tha t  Greek i n d i c e s  take on v a l u e s  1, 2, while  we cont inue 

to l e t  L a t i n  i n d i c e s  take on va lues  1, 2, 3. 

The length of a l ine  element  on the sur face  is given by 

- -  
d s 2  = d r  e d r  = a dx" d x b  4 

where 

- -  

a @  = a m *  ab 

(49) 

(50) 
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i s  t he  metric tensor  of t he  surface.  T h e  components of t h i s  tensor  a re  often ca l l ed  the coef f ic ients  of  the 

first fundamental form of the  surface.  

2 3  rf 

/ 22 

Fig .  3. Two-dimensional sur face  imbedded in three-dimensional Eucl idean  s p a c e  

L e t  ;be a uni t  vector that  i s  normal to  the su r face .  Now the second  fundamental form of the  su r face  

i s  

- - _  - 
d r  - d n  = a a '  n , ~  d x a d x P  = - b 90 d x a d x p  

where 

- -  - -  
b4 = - a a .  n , p  = - a p e  n , a  

are  coef f ic ients  o f  the second fundamental form of t h e  surface.  

13 
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- - 
Since  the vec tors  a ,  and n a re  orthogonal, the  coef f ic ien ts  of  the  second  fundamental form can a l s o  be 

expres sed  as  

@ 

and other such quant i t ies  a re  ca l led  surface tensors. Surface t enso r s  play a fundamental role in the  theory 

of shells. 

Note tha t  b @ i s  a tensor  with r e spec t  to coordinate transformations on the  sur face .  Hence  the b 

- 
In a manner similar to  tha t  followed in the  three-dimensional ca se ,  contravariant base vec tors  a a 

and  a contravariant metric tensor  a g a r ,  defined. T h i s  metric tensor  can be used  to r a i s e  or lower ind ices  

of sur face  tensors .  

L e t  u s  now construct a spec ia l  three-dimensional coordinate sys tem tha t  refers to the two-dimensional 

surface.  If z i s  the perpendicular d i s t ance  from the  sur face  of an arbitrary poin t  in the three-dimensional 

s p a c e  then, as  indicated in Fig.  3, the  posit ion vector of t h i s  point i s  

If we set z3 = z in the  formulas of Section 11-B, then the  base  vec tors  and  metric tensor  of the three- 

dimensional s p a c e  can be expres sed  in terms of sur face  vec tors  and tensors .  T h u s ,  by differentiating 

Eq. (54) and us ing  Eq. (53), we find 

- - 
Hence  from Eq. (23) ,  remembering tha t  n i s  a uni t  vector tha t  i s  normal to a a ,  the three-dimensional metric 

tensor  becomes  

gOp = a @  - 2 b  

ga3 

g33 = 1 

z + b’Y,byp  z 2  4 
= o  
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The der iva t ives  of the vec tors  ga are  determined by s e t t i n g  z = 0 in Eq. (40) and observ ing  tha t  

b c p =  r% I . Thus ,  
z = o  

so’ Here  and  i n  the following developments,  the Christoffel  symbols  F$ are  based on the  metric tensor  a 

u n l e s s  o therwise  spec i f ied .  

- - 

Any vector V can be expressed  in  terms of components with r e s p e c t  to the  three vec tors  a a  and 

n as  

where V a  i s  a f i r s t  order su r face  tensor  and  V i s  a sca la r .  From Eq. (571, (53), and (52), t he  der iva t ive  o f  

V i s  exp res sed  as 
- 

where t h e  double s t roke  deno tes  covariant differentiation with r e s p e c t  to  the sur face ,  i.e., 

Other  usefu l  formulas follow from the definition of the  permutation symbol which i s  



JPL Technical Report No.  32-584 

where a = 1 aap I i s  

involving the c r o s s  

the determinant of the  metric tensor.  From 

products of vectors  a re  derived: 

t h i s  definit ion,  t he  followin equation s 

16 
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Ill. DEFORMATION OF THIN SHELLS 

If a shell i s  sufficiently thin, i t  can  be subjec ted  to la rge  d i sp lacemen t s  and  ro ta t ions  while t he  

deformation or st rain in the  mater ia l  remains relatively small .  Our d i scuss ion  of the deformation of thin 

shells will  be based upon the  Kirchhoff hypothes is  which a s s u m e s  tha t  rec t i l inear  mater ia l  l i nes ,  which a r e  

normal to  the undeformed middle sur face ,  remain rec t i l inear  and inextens ib le  dur ing  the deformation and  

become normal to  the  deformed middle surface.  Within the framework of t h i s  fundamental hypo thes i s ,  we 

shall account  for the e f f ec t s  of la rge  deflection and rotation in  every detail .  

T h e  notation to be  employed in the  following will  be s imi la r  to  tha t  u s e d  in  Section 11. To dis t inguish  

between the  deformed and undeformed s t a t e s  of a body, geometrical  quan t i t i e s  that  refer to  the deformed 

s t a t e  wi l l  be des igna ted  by capi ta l  l e t t e r s ;  t h e  same quan t i t i e s  referring to the  undeformed s t a t e  will be 

des igna ted  by lower c a s e  le t ters .  

A. Strain Tensor 

L e t r ( x )  be the posit ion vector of points in an undeformed e l a s t i c  body. When t h i s  body i s  sub jec t ed  
- ,-u 

to ex terna l  l oads ,  i t  will  deform into a new configuration. A s  ind ica ted  in F ig .  4, U ( x )  i s  t he  d isp lacement  

vector of po in ts  i n  the  body, and  R (x) i s  the position vector of po in ts  in the deformed body. The x i  a re  

material ,  or convected, coord ina tes  which a re  a s soc ia t ed  with corresponding poin ts  in the  deformed and 

un de form ed body . 

- - 

In the undeformed s t a t e ,  the length of a line element i s  given by 

ds2 = g. .  dxi d x i  
11 

(63) 

and in the  deformed s t a t e ,  the length of the  same l ine e lement  i s  

dS2 = G.. d x ' d x j  (64) 
11 

The difference in  the  lengths  of t hese  l ine elements i s  a measure  of the  deformation exper ienced  by the body 

a s  i t  m o v e s  from the  undeformed to the deformed position. T h i s  deformation i s  descr ibed  by a s t r a in  tensor  



~ 
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e . .  which is defined by 
'1 

from which i t  follows that 

The strain tensor 

indicated in Fig.  4, 

can be 

dS2  - d s 2  = 2 e . .  dxi  d x i  
' I  

expressed in terms of the displacement 

x 3  

- 
vector U by noting that, a s  

Fig. 4. Displacement vector and base vectors in 
deformed and undeformed s tates  

(65) 

(66) 
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Now, by us ing  the formulas given in Section 11-B, we write 

Then ,  subs t i t u t e  t hese  expres s ions  into Eq. (66) and obtain the resu l t  

T h i s  resu l t  s h o w s  that  e . .  i s  a symmetric tensor.  
5 1  

B. Deformation according to the Kirchhoff Hypothesis 

Consider  a thin shell  for which T ( x ' ,  x 2 )  is the pos i t ion  vec tor  of po in ts  on i t s  middle su r face  in the 
- 

undeformed s t a t e  and  R (XI, x2) i s  the posit ion vector of corresponding poin ts  in the  deformed s t a t e .  A s  

ind ica ted  in F ig .  5 ,  the point p on the undeformed middle su r face  moves  with a d isp lacement  vector 

U_ ( x ' ,  x') to a point P on the  deformed middle surface.  T h u s ,  

- 
If n is a unit vector tha t  i s  normal to  the undeformed middle sur face ,  then as in Section 11-F, the  posit ion 

vec tor  of any point p a t  a d i s t ance  z from the undeforrned middle sur face  i s  given by 
,L 

The e s s e n c e  o f  the Kirchhoff hypothes is  i s  that  upon deformation, the  point p moves  with a d isp lacement  

vector U ( x ' ,  x2, z )  to the point P which i s  on a normal l ine a t  the same  d i s t ance  from the deformed middle 

su r face .  Thus ,  i f  N is a unit  vector that  i s  normal to  the deformed middle sur face ,  then the posit ion vector 

'u - 

,-L - 

of P is 
,-u 

19 
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1 3  
AJ P 

Fig .  5 .  Deformation according to the Kirchhoff hypothes is  

S ince  

- 

i t  immediately fol!ows that the d isp lacement  vector C' of any point p in the shell  i s  given Ly 
5 

- - 
- 

U =  u + z m  

where 

(74) 

20 
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i s  a measure of the rotation of the middle sur face  during the  deformation. A s  shown by Eq. (74) and (75) ,  the 

remarkable consequence  of the Kirchhoff hypothesis i s  t ha t  dependence  of the d isp lacement  vector U upon 

the variable z i s  explicit ly determined. 

- 

On the b a s i s  of Eq. (74), the  s t a t e  of deformation a t  any poin t  in a s h e l l  can be e x p r e s s e d  in te rms  

of the deformation of i t s  middle sur face  and  z .  A s  in Section 11-F, Lhe vec tors  that  a r e  tangent  to the 

deformed middle sur face  in  the direction of the  coordinate l i n e s  a re  

and the  coef f ic ien ts  of the f i rs t  fundamental form of the  deformed middle sur face  a re  

- -  
A @  = A a *  A p  

The coef f ic ien ts  of the  second  fundamental form of the  deformed middle sur face  a re  

B a p =  - A a *  N p  = - A p -  N ,  a 

Hence  from Eq. (72), the b a s e  vec tors  of t he  deformed shell a re  

- 
G = N ;  G a =  R = A a +  z N a =  ( S f -  z B t )  A p  

3 .-Uta 

and the  metric tensor  i s  

Ga3 = 0 

G3, = 1 

G +  = A $ -  2 B 4 z  + B ; B y p z  2 

By u s i n g  the expression (Eq. 56) for the metric tensor of the undeformed she l l  together with Eq .  (80) in 

Eq. (66) ,  the s t ra in  tensor  in the  Kirchhoffean theory of s h e l l s  i s  found to be 

21 

(77) 

(78) 

(79) 

(80) 
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e i P  = 0 

2 1 
e +  = ( A a p -  - z (B4- hap) + ( B Y , B y p  - bY,  b y p )  

2 

T h i s  resu l t  s h o w s  that ,  under the  Kirchhoff hypothes is ,  the s t ra in  in the z-direction i s  zero. 

L e t  u s  now define two sur face  tensors  tha t  character ize  the  deformation of the middle sur face  of a 

shell .  The membrane strain tensor  i s  def ined as  

and the change i n  curvature tensor  i s  def ined a s  

% If we  u s e  the assumption that  s t r a i n s  a re  smal l ,  which implies  tha t  the I 
small  s t ra in ,  then the a @  can be used  to r a i s e  or lower i n d i c e s  on the R 

subs t i tu ted  into Eq. (811, the resul t  i s  

I = I .4 1 to within a negligibly 

T h u s ,  when Eq. (82) and (83) a r e  

48 

4' 

T h u s  the deformation of a shell, under  the Kirchhoff hypothes is ,  i s  completely determined in  terms of the s i x  

quant i t ies  y4 and  x ~ ,  which character ize  the deformation of the middle sur face  of the shell. 

- 
The membrane strain tensor  can be e x p r e s s e d  in terms of the d isp lacement  vector  u of the middle  

sur face  by not ing tha t  from Eq. (76) and  (70) 

IIence from Eq. ( 7 7 ) ,  
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and,  reca l l ing  Eq.  (50), Eq. (82) becomes  

If we expres s  the displacement vector in terms of i t s  t ensor  components as 

then from Eq.  (59) 

and the membrane s t ra in  tensor can be expressed  i n  the a l te rna t ive  form 

T h e  curvature change can be expressed  i n  terms of middle su r face  d isp lacement  by u s i n g  Eq. (78) 

and (52) in the definit ion (Eq. 83). T h u s ,  

Hence, from Eq. (85) and (75) 

- 
T o  expres s  m i n  terms of middle sur face  d isp lacements ,  we proceed from the definit ion (Eq. 75) and 

the'formulas (Eq .  62), again assuming that  s t ra ins  a re  smal l ,  which impl ies  that  the permutation symbols  for 

the deformed and undeformed s t a t e s  a re  approximately equal ,  and obtain 

23 
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When Eq. (85) i s  subs t i tu ted ,  t h i s  resu l t  becomes  

Eq. (92) toge ther  with (94) completely de te rmines  the curvature change  in terms of the middle sur face  d i sp lace -  

ment. 

- 
When m is expressed in terms of i t s  t ensor  components as  

- - - 
m = r n a a a +  m n  

and u s e  is made of the Codazzi equation 

Eq.  (92) and  (94) become 

24 
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C. Spec i al Approximation s 

In the geometrically nonlinear theory of shel ls ,  a widely-used approximation accoun t s  for la rge  

def lec t ions  but a s s u m e s  tha t  ro ta t ions  a re  small .  It i s  further a s sumed  tha t  t he  terms b Y u  

smal l  compared to w 

a re  negligibly 
a y  

Thus ,  Eq. (89) becomes  
,a' 

As ind ica ted  in F ig .  6, a consequence  of the assumption tha t  ro ta t ions  a re  smal l  is tha t  in Eq .  (loo), the  

f i rs t  term i s  smal l  compared to  the l a s t  term. Th i s  impl ies  that  only nonlinear terms in w 

in the membrane s t ra in  tensor.  

need  b e  r e t a ined  
, a  

EXAGGERATED 
ANGLE OF ROTATION 

Fig .  6. Special approximations 

25 
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Hence, u s i n g  Eq. (100) in Eq.  (87), the  membrane s t ra in  tensor  becomes  

To determine the change  in curvature tensor ,  we need  an  express ion  for t he  vec tor  ;which has a 

re la t ive ly  sma l l  component in the ;direction as indica ted  in F ig .  6. For t h i s  purpose  we  take  

Hence ,  Eq. (94) t a k e s  the form 

from which we see tha t  

m = 0 ;  

Consequently , 

Now, with Eq.  (105) and (102), Eq. (92) becomes  

(103) 

(104) 

(105) 

When the  nonl inear  terms in th i s  express ion  a re  neglec ted ,  which i s  equiva len t  to  neg lec t ing  the  l a s t  term 

in Eq. (105), the change  in curvature t akes  the well-known form 

X @  = - w//@ (107) 

26 
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T h e  geometrically nonlinear theory of she l l s  t ha t  i s  b a s e d  on Eq. (107) and (101) i s  a s s o c i a t e d  with 

the names  of Donne11 and Vlasov. It i s  often ca l led  a “shallow-shell” theory because  t h e  e f f ec t s  of middle- 

sur face  rotation and tangential  d i sp lacement  are small compared to  the  e f f ec t  of def lec t ion  normal to  the  

middle su r face  of sha l low she l l s ;  and assumpt ions  regarding the  re la t ive  s i z e  of t h e s e  quan t i t i e s  were the  

b a s i s  of t he  derivation of Eq. (107) and  (101). 

When the  nonlinear terms are  neglec ted  in Eq. (101), then t h i s  equation together with Eq. (107) forms 

the  b a s i s  for Donnell’s l inear  theory. The Flugge-Viasov i inear  theory i s  obtained by neglecting the  non!ineor 

terms in Eq. (90), (97), and (W), and, on the  basis of assumed infinitesimal ro ta t ions ,  s e t t i n g  m = 0 in t h e s e  

equations.  

27 
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IV. EQUILIBRIUM EQUATIONS 

In th i s  Section, the  differential  equat ions  governing the  equilibrium of a she l l  e lement  in  the 

deformed s t a t e  will  be derived. The  ini t ia l  undeformed s t a t e  of the  s h e l l  i s  assumed to  be s t ress - f ree .  

Although s t r a ins  a re  assumed t o  be smal l ,  d i sp lacements  and ro t a t ions  may be large; and the equilibrium 

must  therefore be descr ibed  in terms of the deformed s t a t e .  Continuing with our two-dimensional treatment of 

a s h e l l ,  the equilibrium conditions wi l l  deal with resu l tan t  fo rces  and moments over the  th i ckness  of the 

she l l .  L e t  Ti/@ (no sum) be the s t r e s s  vector,  which has the  dimension of force per un i t  a rea ,  on the  

sur face  xi = cons tan t  in the  deformed s t a t e .  It can be shown ( s e e  Green and  Zerna) that Ti i s  a contravariant 

- 

- 

vector which l e a d s  to the definit ion 

- .. 
of the  contravariant s t r e s s  tensor  T'1. T h e  s t r e s s  vec tors  T u  on a d i f fe ren t ia l  element of a r e a  in a s h e l l  a r e  

ind ica ted  in F ig .  7 

Fig. 7 .  St re s s  vec tors  on a different ia l  e lement  of a r e a  in a shel l  

28 
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Similarly, as indica ted  in F ig .  8, let N a / p ( n o  sum) and M a / p ( n o  sum) be the r e su l t an t  force and  

moment vec tors  per un i t  length a long  the middle surface on xa= cons tan t .  By integrating with r e s p e c t  to z 

over the th i ckness  of the  she l l ,  the s t r e s s  resu l tan ts  can  be e x p r e s s e d  in te rms  of the s t r e s s e s .  

W 

Fig .  8. Resul tan t  force and moment vec tors  per un i t  length a long  middle sur face  

Thus, assuming  the she l l  has a cons tan t  th ickness  2 h ,  we have  

When we u s e  the resu l t  tha t  

A , ,  = ~ ~ 2 2 ;  G,,  = G G 2 2  

(109) 

(1 10) 
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and cance l  the  dx' ,  then Eq. (109) t a k e s  the form 

Now l e t  u s  again  u s e  the smal l  s t ra in  assumpt ion ,  which enab le s  u s  to  write 

-w - 
A = a ,  G = g  

Hence  Eq. (111) can be genera l ized  to 

h -  - 

N a  = s T a  E dz 
-h 

Similar reasoning  l eads  to the  express ion  for the  resu l tan t  moment: 

- 
M a  = J h -  N X  - T a  E z d z  

-h 

(112) 

(113) 

(114) 

T h e  tensor  components of the  resu l tan t  force and moment vec tors  a re  defined by 

- - - 
N ~ =  N + A ~ + Q ~ N  (115) 

- - -  - 

M~ = M @ N  A~ = M @  ePr A Y  (116) 

When these  def in i t ions ,  together with Eq. (108) and (79), a r e  u s e d  in Eq. (113) and (1141, the resu l tan t  force  

and moment t enso r s  become 

(118) 
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(119) 

- 
To develop  the differential  equat ions  governing the  s t r e s s  r e su l t an t s ,  l e t  P be the  externally-applied 

force vector per un i t  of middle sur face  a rea ;  and  consider the  fo rces  and moments t h a t  a c t  on a n  e lement  of 

the middle su r face  a s  ind ica ted  in Fig.  9. 

F ig .  9. Forces  and moments ac t ing  on an e lement  of the middle sur face  

In determining the total  force or moment that a c t s  on a s i d e  of t he  element,  u s e  i s  made of Eq. (110) and (112). 

Tak ing  the vec tor  sum of these  forces and moments, the conditions of equilibrium become 

If we l e t  

- - - 
P = P a  Aa+ P N  (121) 

31 
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and u s e  Eq. (83), noting the identity 

then Eq. (120) can be written in the form 

(123) 

In examining these equilibrium equat ions,  it should be noted that,  by Eq. (121) ,  the components of the 
- 

applied force vector P are referred to the deformed s t a t e .  T h i s  i s  appropriate for a loading such a s  hydro- 

s t a t i c  pressure.  For other loadings,  such a s  a gravity load,  the components are  more appropriately referred to 

the undeformed s t a t e  in the form 

- 
P = F a Z a +  F n  

In th i s  c a s e ,  i t  follows from Eq. (85) and (75) that  

(124) 

For the spec ia l  approximation for small  rotations, that  i s  d i s c u s s e d  in Section 111-C, the equilibrium 

equat ions (Eq.  123) take the simplified form 

N@,,a+ P P  = 0 

b g N @  + QaIla+P= 0 

MgIla- QP = 0 (126) 
In th i s  c a s e ,  the l a s t  member of Eq. (123) i s  disregarded.  Observe that  for s m a l l  rotat ions,  the change in 

curvature x @ i s  assumed to be negligibly small  compared to the in i t ia l  curvature b c p .  

32 
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V. STRE SS-STRAI N RELATl ON S 

T o  complete the  formulation of  a geometrically nonlinear theory of s h e l l s ,  we need  equat ions  tha t  

re la te  t he  s t r e s s  r e su l t an t s ,  N @  and M @ ,  to quantit ies that  charac te r ize  the  deformation of a shell, namely, 

the membrane s t ra in  tensor  y@ and the change in curvature tensor  x T h e s e  r e l a t ions  a re  obta ined  through 

application of t he  c l a s s i c a l ,  l inear  Hooke’s law. Since s t r a ins  a re  a s sumed  to be smal l ,  t he  appl icabi l i ty  of 

Hooke’s law i s  cer ta in ly  p laus ib le ,  a t  l e a s t  for metall ic mater ia l s .  

48’ 

A s  ind ica ted  by the  f i r s t  member of Eq .  (81), the Kirchhoff hypo thes i s  i s  equiva len t  to the assumpt ion  

of p lane  s t ra in .  T h i s  makes  i t  poss ib l e  to  proceed directly to a two-dimensional Hooke’s l aw  re la t ing  the  

s t r e s s  T@ and the s t ra in  e @ .  I t  i s  customary, however, in t he  development of shell theory,  to u s e  the  

Hooke’s l a w  tha t  i s  based  on p lane  s t r e s s ,  which has the  form 

where E i s  Young’s modulus and v i s  Poisson’s  ratio. I t  should be emphas ized  tha t  t h i s  p lane  s t r e s s  

assumption d o e s  not introduce any fundamental simplification into the theory of shells.  It merely a f f ec t s  

the manner i n  which Poisson’s  ratio en te r s  into the theory. 

When Eq. (127) and (84) a re  used  in Eq. (117) and (119), the  integration with r e spec t  to z can  be 

carried out  without further approximations in the  theory. For th i s  integration, i t  i s  necessa ry  to  note that,  

from Eq. (28) and  (56), 

Furthermore, 

E = 1 - 2 H z  + K z 2  

33 
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where 

1 

2 ”  
H = - b“ (130) 

i s  the mean curvature  and 

(131) 
1 

2 
K = - ( b a b P -  b @ b c p )  

is the Gauss ian  curvature of the undeformed middle sur face .  T h u s ,  the s t ress -s t ra in  re la t ions  take  the form 

where terms tha t  a r e  multiplied by powers of the  t h i c k n e s s  a r e  re ta ined  through h 3  only.  

In t h i s  form, the s t ress -s t ra in  re la t ions  (Eq.  132) and (Eq.  133) are  nonl inear  because  the tensors  

@’ A@’r, B@’r, C@’Y, and D“@’r contain the change  in curvature tensor  x 

With Eq.  (132) and (133), the l a s t  member of Eq.  (123), which i s  often ca l led  the “sixth equilibrium 

equation,” i s  s a t i s f i e d  ident ical ly .  The third member of Eq.  (123) determines the t ransverse  s h e a r  f o r c e s  

Q“; and,  hence ,  with the r e s u l t s  of Section 111, all s t r e s s  r e s u l t a n t s  a re  e x p r e s s i b l e  in terms of the components 

u a a n d  w of middle-surface displacement .  In  t h i s  c a s e ,  the  f i r s t  two members of Eq. (123) may be f inal ly  

reduced to an eighth-order sys tem of three nonl inear  different ia l  equat ions  governing the  three unknown u a  

and w, respec t ive ly .  

Another approximation tha t  i s  frequently appl ied  in  the theory of thin shells i s  to neglec t  the second  

terms in Eq.  (132) and (133). T h i s  i s  equivalent  to s e t t i n g  g @  =“ u @  in Eq.  (127), neglec t ing  the  z 2  term in 

Eq. (84), and tak ing  a =“ 1 in  Eq. (117) and (119). The b a s i s  for th i s  approximation i s  the  val id  

argument that  for a thin she l l ,  the ratio of shell t h i c k n e s s  to  minimum radius  of  curvature  i s  smal l  compared 

to uni ty .  However, the  approximation leads to a formal contradict ion in the theory s i n c e ,  in  t h i s  c a s e ,  the 

34 1 
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sixth equilibrium equation i s  no t  s a t i s f i ed .  For most prac t ica l  problems, t h i s  contradiction i s  ins igni f icant  

so  tha t  the simplified s t ress -s t ra in  re la t ions  

(134) 

(135) 

may be appl ied  with a good degree of confidence.  When the s t ress -s t ra in  re la t ions ,  (Eq. 134), (Eq. 135), the  

equilibrium Eq.  (123), and the strain-displacement re la t ions ,  (Eq. 90), (Eq. 98) and (Eq. 991, a re  combined 

with appropriate boundary conditions,  the formulation of a problem in the  geometrically nonlinear theory of 

s h e l l s  is complete.  

35 
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VI. THEORY OF ELASTIC STABILITY 

A. General Theory 

The ques t ion  of s tabi l i ty  a r i s e s  in the  theory of e l a s t i c i ty  because , for  a given set  of externally 

applied loads ,  the equilibrium configuration that i s  a s sumed  by the  e l a s t i c  body, in general ,  i s  no t  unique. 

Furthermore, of the  theoretically-possible equilibrium configurations a s soc ia t ed  with a certain load ,  some 

are  l e s s  l ikely to occur than others.  T h i s  means  tha t  a poss ib l e  equilibrium configuration may be uns t ab le .  

In the c l a s s i c a l  l inear  theory of e las t ic i ty ,  the equilibrium configuration for a given load  i s  unique. The 

question of s tabi l i ty ,  which involves  a non-unique equilibrium configuration, mus t  therefore be examined 

from the point of view of a nonlinear theory of e l a s t i c i ty ,  which provides non-unique so lu t ions  of the governing 

differential  equat ions .  

To  develop  the theory o f  e l a s t i c  s tabi l i ty ,  we need  a su i t ab le  s tabi l i ty  cri terion. Such a criterion may 

be  s t a t ed ,  in the words of Green and Adkins, as  follows: “An equilibrium s t a t e  i s  s a i d  to be s t a b l e  if, in the  

motion following a n  arbitrary disturbance, the  amplitude of the additional d i sp lacement  i s  a lways  vanishingly- 

smal l  when the d is turbance  i tself  i s  sufficiently small .” If t h i s  additional d i sp lacement  i s  nonzero for a 

vanishingly-small disturbance, then the  equilibrium i s  uns tab le .  Our d i scuss ion  will follow the l i n e  of 

reasoning  s e t  forth by Novozhilov, and by Green and  Adkins,  as i t  app l i e s  in  the theory of s h e l l s .  

0 
L e t  ;be the middle surface displacement vector,  which we regard as known, of an  equilibrium config- 

uration whose s tabi l i ty  we wish to  inves t iga te .  Suppose t h i s  ini t ia l  equilibrium configuration i s  a s s o c i a t e d  

with an applied sur face  load  P. Now, consider an ad jacen t  equilibrium posit ion which r e su l t s  from a van- 

ishingly-small  i nc rease  in the applied loads  E P ,  where E i s  a smal l  cons tan t  and  7 i s  a vanishingly-small  

vector. Thus ,  the  load  vector for t h i s  new equilibrium configuration i s  

0 

1 1 

0 1 - 
P = P t E P  

and the  new pos i t ion  vector can be expres sed  in  a power s e r i e s  in the  smal l  parameter E :  

1 2 
2 -  

- 0 - -  
u = u f E U  t E U t ” ’  

36 
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Since E i s  a s sumed  to  be vanishingly small ,  we may neg lec t  the higher-order terms in  t h i s  express ion  and 

regard E U as  the additional d i sp lacement  due to the addi t iona l  load. 
1 

By virtue of the re la t ions  between deformation and  d isp lacement ,  Eq .  (137) can  be u s e d  to determine 

the membrane-strain and curvature-change tensors  for the  new equilibrium configuration in the  form 

Hence  from s t ress -s t ra in  re la t ions ,  

(138) 

Since the  new posit ion i s  an equilibrium configuration, the  equilibrium Eq.  (123) mus t  be sa t i s f i ed .  

When Q" i s  eliminated, t h i s  equation t akes  the form 

Moreover, s i n c e  the  ini t ia l  posit ion i s  an  equilibrium configuration, the following equilibrium equation must  

a l so  be sa t i s f i ed :  

0 0 
where P a  and P are  the ini t ia l  load tensors .  

37 
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If w e  now l e t  

0 1 p a  = p a +  E p a +  ... 

0 1 
P = P 4- E P + . . *  (142) 

and subs t i tu te  the E s e r i e s  express ions  into Eq.  (140), and then subt rac t  Eq.  (141) from the resu l t ,  the 

following equat ion i s  obtained: 

1 0 1  1 0  1 
N"3//a-  ( b t -  x t )  MYa,/, + x!h!Ya,/, + P P  = 0 

(1 43) 

In these equat ions ,  an E has been cancel led;  and  higher-order terms in E have  been neglec ted .  

Equat ion (143) i s  fundamental in t h i s  theory of e l a s t i c  s tab i l i ty .  By making appropriate  subs t i tu t ions ,  

t h i s  equation can be shown to be express ib le  in  a form tha t  i s  l inear  in the unknown d isp lacement  components 
1 1 1 1 
u a  and  w. Before we examine t h i s  point, however, let u s  clarify t h e  meaning of the  terms P a  and P tha t  appear  

in  Eq. (143). 

We shall dis t inguish two types  of loading on the  shell surface:  (1) dead weight  (inertia),  and (2) 
- 

hydrostat ic  pressure .  For a dead  weight  loading, the direct ion of the load vector  P i s  independent  of the 

displacement;  while  for a hydrostat ic  pressure ,  t h i s  vec tor  i s  a lways  normal to the sur face  of the shell. It 

will be convenient  to u s e  Eq.  (124) and refer  the load vector  to the undefonned state. Thus ,  u s i n g  an E 

s e r i e s ,  we write 

1 1 

1 1  

1 
By comparing t h i s  with Eq. (136) and reca l l ing  that P i s  vanishingly-small, we  conclude  tha t  F a  and F are  

also vanishingly-small. Hence,  by making appropriate  s u b s t i t u t i o n s  into Eq.  (125), and s e t t i n g  F a =  F = 0,  

we obtain 
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1 1 0  1 0  
P = m F + m a F a  

0 0 
For the c a s e  of dead weight  or inertia loading, F P a n d  F a re  merely the  load  components referred to the 

undeformed s t a t e .  

For the c a s e  of a hydros ta t ic  pressure  load, p, we write 

0 
P = F a a a +  F n  = - p N  

- - O 0 -  0 -  

Hence ,  u s i n g  Eq.  (75) and (95), we f ind  

0 0 
F = - p (  m +  1) 

which are  to be used  in  the load express ions  (Eq. 145). 

( 145) 

(1466) 

(147) 

A s  we s e e  from the form of the load terms (Eq. 145), the  bas i c  Eq. (143) can be put in  a form tha t  i s  
1 1 

homogeneous in  the  unknown displacement components u a a n d  w .  

B. Classical  Theory of Elastic Stability 

An important application of the theory of e l a s t i c  s tabi l i ty  i s  the  c a s e  for which the  equilibrium 

configuration whose  s tabi l i ty  i s  being examined i s  governed by the c l a s s i c a l  l inear  theory of e l a s t i c i ty .  In 

0 0 
th i s  c a s e ,  the ini t ia l  s t r e s s  resu l tan ts  N@and M@are  determined from a l inear  theory of shells. S ince  the 

d i sp lacemen t s  and  ro ta t ions  a re  infinitesimal,  the xcp a re  neglec ted  in comparison with b 

In the load  terms (Eq. 145), the products of the  vectors u and u are  negl ig ib le ,  and  the component m of the 

vec tor  m i s  taken a s  zero. Thus, for the c a s e  of hydrostatic pressure ,  we have  

0 
in Eq. (143). 

0 
.p - 0 1  - 

0 - 

1 1 1 
P a  = - ( w , ~ +  ‘@UP) p 

1 1 p = -  m P  (148) 
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1 
In prac t ica l  appl ica t ions ,  the P a i n  Eq. (148) i s  usua l ly  taken to be zero. 

In considering the s tabi l i ty  of she l l  s t ruc tures ,  by f a r  the  most  widely-used approach i s  to examine 

the s tabi l i ty  of  the equilibrium configuration tha t  i s  governed by the l i nea r  membrane theory of shells. In 

t h i s  c a s e ,  the  M @  are zero; and Eq.  (143) r educes  to 
0 

By making appropriate subs t i tu t ions ,  t h i s  s e t  of equat ions  can be reduced to  a s e t  of homogeneous 

differential  equat ions  i n  the uaand  to. Since the  appropriate boundary conditions a re  a l s o  homogeneous,  

the problem i s  a l inear eigenvalue problem. 

1 1 
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